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When two liquid drops come into contact, they coalesce rapidly, owing to the large
curvature and unbalanced surface-tension forces in the neck region. We use an ultra-
high-speed video camera to study the coalescence of a pendent and a sessile drop,
over a range of drop sizes and liquid viscosities. For low viscosity, the outward motion
of the liquid contact region is successfully described by a dynamic capillary-inertial
model based on the local vertical spacing between the two drop surfaces. This model
applies even when the drops are of different sizes. Increasing viscosity slows down
the coalescence when the Reynolds number Rev = ρRaveσ/µ2 < 5000, where Rave is the
average of the tip radii of the two similar size drops, ρ is the liquid density, σ is the
surface tension and µ the dynamic viscosity. At Rev � 50, the growth-rate of the neck
radius has reduced by a half, which for water corresponds to a drop diameter of only
2 µm. For the largest viscosities, the neck region initially grows in size at a constant
velocity. The neck curvature also becomes progressively sharper with increasing
viscosity. The results are compared to previously predicted power laws, finding slight,
but significant deviations from the predicted exponents. These deviations are most
probably caused by the finite initial contact radius.

1. Introduction
There has recently been considerable interest in the two basic ‘singularities’ occurr-

ing in free-surface flows, i.e. the breakup of a liquid thread into two pieces and the
merging or coalescence of two liquid masses. The pinch-off of a drop and the breakup
of a liquid thread has been extensively studied, as reviewed by Eggers (1997). This has,
for example, revealed an extraordinary pinch-off cascade by Shi, Brenner & Nagel
(1994).

However, as Eggers (1997) points out, the temporal resolution of previous measure-
ments has been ‘insufficient to observe much of the extremely rapid motion after two
surfaces touch’. To accomplish such measurements, we use herein a novel ultra-high-
speed video camera, developed by Etoh et al. (2002, 2003) and capable of acquiring
103 consecutive frames at frame-rates up to 1million frames s−1.

The only previous measurements capable of resolving the original motions were
obtained by Menchaca-Rocha et al. (2001) using two mercury drops sitting on a glass
plate. They used a high-speed film camera capable of taking 8 consecutive frames.

Our experimental set-up focuses on the initial coalescence motions, by growing a
pendent and a sessile drop on vertically aligned metal tubes, until they come into
contact (see figure 1). This set-up does not therefore allow us to study the longterm
evolution of coalescing drops, such as the coalescence cascade recently discovered
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Figure 1. The drop orientation used in this study. Coalescence of water drops. The tube
diameters are D = 2.95mm and the radii of curvature at the contact point are Rt = 1.53 mm
and Rb =2.05 mm. The second image is taken about 950 µs after the first contact between the
two drops. The frame rate was 100 kHz.

by Thoroddsen & Takehara (2000), for a drop coalescing with a flat liquid surface.
This cascade proceeds at the capillary-inertial time scaling, with a daughter drop
being pinched off at the top of the original drop. A similar cascade for a drop at
an immiscible liquid–liquid interface, was previously discovered by Charles & Mason
(1960).

Theoretical treatment of coalescence has mostly focused on the two-dimensional
configuration. Keller, Milewski & Vanden-Broeck (2000) have computed the coale-
scence shapes for two-dimensional inviscid wedges, based on the self-similar solutions
for capillary-driven flows, first presented by Keller & Miksis (1983). These self-similar
solutions cannot be directly applied here, as our configuration has imposed external
length-scales of the drop diameters. Oguz & Prosperetti (1989) have simulated the
coalescence of two flat surfaces connected at a neck region. Their calculations are
inviscid and were performed in both two- and three-dimensions. They have shown
the formation of bubble rings when the top drop is moving downwards.

Miksis & Vanden-Broeck (1999) have found the corresponding self-similar solution
for viscous wedges, over a limited range of viscosity ratios between the inner and
outer liquids. The coalescence of very viscous liquid drops, where inertia is negligible,
has been widely studied owing to its importance to sintering (see Martinez-Herrera
& Derby 1995) and coarsening of emulsions (Rother, Zinchenko & Davis 1997). The
coalescence of nano-particles such as gold is a recent topic of interest and fluid models
may be of relevance here (Lee, Mori & Yasuda 2002).

Hopper (1990, 1992, 1993a, b) has found an analytical solution for the coalescence
of two viscous cylinders. The solution is two-dimensional, but allows for different
radii for the two cylinders. Richardson (1992) has further elucidated this solution.

Eggers, Lister & Stone (1999) have studied the asymptotics of the viscous-dominated
coalescence, where the three-dimensional problem can be treated as if it were two-
dimensional. Their work is formulated for the very early stages of the coalescence.
They also present a dimensional argument for the inviscid case, as will be discussed
in a later section.

Duchemin, Eggers & Josserand (2003) have performed inviscid simulations of this
set-up, for the very early coalescence. They find repeated reconnections entrapping
toroidal regions of outer fluid, when r/R < 0.035. This is qualitatively similar to the
numerical results by Oguz & Prosperetti (1989) for two approaching surfaces.

The inverted problem, of the coalescence of two bubbles, has been studied using a
linear array of high-speed photodiodes by Stover, Tobias & Denn (1997).
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Measurements of the coalescence of drops in micro-devices have been carried out
by Wu et al. (2003) and reported in more detail by Wu et al. (2004).

2. Experimental set-up
The orientation of the pendent and sessile drops is shown in figure 1. This set-up

retains the axisymmetry around the coalescence axis, but the shapes of the two drops
are distorted differently by gravity. The two drops are therefore of slightly different
curvature and internal pressure. In order to find the true tip curvatures for the two
drops and the vertical separations of the liquid surfaces, we have therefore used the
exact static drop shapes in the coalescence model, as detailed in § 3.

2.1. Ultra-high-speed video camera and long-distance microscope

To capture the very rapid motions following the liquid contact, we use a novel ultra-
high-speed video camera developed by Etoh et al. (2002, 2003) which reaches frame
rates as high as 1 million frames s−1. To achieve these very rapid frame rates, the
camera uses in-situ image storage (ISIS) inside every pixel on the CCD chip. The
prototype can store 103 consecutive frames, where each frame has 260 × 312 pixel
elements irrespective of the frame rate used. Furthermore, a 10-bit intensity resolution
generates high image quality. The ISIS structure of the prototype can, in principle,
be extended to 50 Mega-frames s−1 using a single sensor.

This new camera records frames continually into the ISIS memory, which clears
through a drain, until a trigger signal stops the imaging. This signal can therefore be
timed at any of the 103 images, giving the required flexibility to the external trigger.
This feature effectively allows observations of events occurring before the trigger. The
movie clips are then rapidly stored onto a dedicated computer.

One of the greatest advantages of this novel video camera is its ease of use. By elim-
inating the need for video tapes or film developing, we can perform numerous experi-
ments in rapid succession, thus investigating many experimental conditions in a short
time. This makes the study of complex phenomena more practical than previously
possible.

The diameter of the initial contact region of the two drops is of the order of 100 µm.
To capture the initial motions accurately, large magnifications are therefore required.
Here, we use a long-distance microscopic lens (Questar QM100). It has optical
resolution of 1 µm. The experiments used magnifications in the range from 5–10, at a
distance of about 15 cm.

The liquid shapes were visualized as a silhouette against an illuminated ‘screen’.
Diffuse backlighting is produced by one or two high-intensity spot-lights (Olympus,
LG-PS2), which were shone onto a sheet of white paper or drafting paper depending
on the illumination intensity required. These are cool spot-lights which were blocked
between the actual video acquisitions, therefore giving minimum direct heating of
the liquids. The need for high-intensity hot lamps has been troublesome for earlier
high-speed camera studies of free surface flows, as they can induce thermocapillary
convection. The high sensitivity of the new CCD sensor avoids any such problems,
without the need for an image intensifier. The camera has Peltier cooling to reduce
thermal noise, keeping the sensor temperature at around 8 ◦C. Dark regions visible
in the corners of some of the video frames, e.g. figure 14, are simply due to the edges
of the field of view of the lenses used.
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Figure 2. Experimental set-up. (a) Ultra-high-speed video camera and long-distance micro-
scope, along with 3 micro-meter stages and the illuminating lamps. (b) Set-up sketch for the
calculation of static drop shapes.

2.2. The drop set-up

Figure 2(a) shows the needle set-up used to bring the two drops into contact. Three
micro-meters were used to adjust the relative position of the top needle, both to adjust
the vertical spacing, and for horizontal centring of the two drops.

One of the aims of this study was to investigate the effects of drop size on the co-
alescence speed. This was accomplished using different nozzle diameters D. However,
practical factors limit the range of drop sizes we can study. The largest drops are
excessively distorted by gravity and the smallest ones limited by the optical resolution
of our system and the smallest needles available to us.

Three sets of metallic needles were used in most of the experiments herein. Their
outer diameters D were 1.09, 1.78 and 2.95 mm. In a few cases, the openings of larger
plastic gate valves, with outer diameters of 5.5 and 8 mm, were used. Coalescence of
drops having different curvatures was also studied, as well as drops coalescing with
flat liquid surfaces.

The liquids used were primarily deionized water, as well as mixtures of glycerin
and water, used to vary the liquid viscosity. Similarly, limited experiments were
performed with alcohol/water solutions to vary the surface tension. A small amount
of salt, around 1 g/l000 ml, was added to the liquids to make them conductive. This
was required for the trigger, which marked the electrical contact of the two liquid
surfaces.

The drops do not touch at a point, but along a finite ring, having a diameter of
the order of 100 µm. The most likely explanation is the presence of air, as has been
studied, among others, by Jones & Wilson (1978) and Rother et al. (1997). No matter
how slowly the two surfaces meet, the lubrication pressure will eventually become
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strong enough to overcome the capillary pressure and deform the drops. This will
most probably trap a tiny air bubble at the centre of the contact, as is observed
experimentally for impacting drops, see Peck & Sigurdson (1994) and Thoroddsen,
Etoh & Takehara (2003). The speed at which the two surfaces approach is here
kept extremely low, of the order of < 100 µm s−1, but could not be independently
controlled. Usually, the bottom drop was grown to the centre of the image and then
the top drop allowed to grow slowly until the two touched, starting the coalescence
process. The gravity-driven flow of the liquids was controlled with plastic gate-valves,
which were adjusted to very low flow rates, but could not be set to a specific value
for this flow rate. An additional set of valves would stop and start the flow. As
the needles are usually out of view of the camera, there was no direct control over
where the drops meet. In general, therefore, they do not meet exactly at the midpoint
between the two needles.

2.3. Onset of motion and the electrical trigger

In the present experiments, we use electrical contact between the two liquid surfaces to
start the image sequence of each movie clip. The start of motion is observed about 20–
60 µs after the electrical contact. This suggests that electrical contact is initiated just
before a liquid bridge is formed between the two liquid masses. This delay appears
shorter for the smallest drops, i.e. for higher curvature of the two surfaces. This
suggests that surface charge may play some role in the initial electrical contact. The
trigger was designed for fast response and at the same time minimizing the electrical
current between the drops following the contact. We estimate this current to be less
than 25 µA. The experiments of Menchaca-Rocha et al. (2001) with mercury drops
show similar time delays. This unknown delay will certainly sabotage any attempts to
construct power laws close to the initial start of motion, as to is unknown. This is
further discussed in § 5.3.

3. Theoretical considerations
3.1. Initial static shapes of the drops

The orientation of the drops is shown in figure 1. The two drops are distorted
differently, owing to their orientation with respect to gravity. The top pendent drop is
stretched while the bottom sessile drop becomes flatter. The extent of this deformation
is characterized by the capillary length for a particular liquid

a =

(
σ

ρg

)1/2

,

where σ is the surface tension coefficient, ρ is the liquid density and g is gravity. For
drop radius Rd >a, gravity will cause significant deviations from spherical form.

For precise characterization of the initial static drop shapes, we have numerically
solved the differential equations describing these shapes, using the method described
by Fordham (1948). The static drop shape represents a balance between hydrostatic
pressure ρgz and the capillary pressure,

pcap = pin − pout = σ

(
1

R1

+
1

R2

)
, (3.1)

where R1 and R2 are the principal radii of curvature of the free surface. The pressure
inside the liquid at the bottom tip of the drop is determined solely by the tip radius
of curvature, as z = 0 and R1 = R2, i.e. ptip =2σ/Rt . Here, we name these tip radii
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of curvature Rt for the top drop and Rb for the bottom drop. Working in terms of
gauge pressure, we set pout =0 and noting that the hydrostatic pressure decreases with
height inside the top drop, the above balance states

1

R1

+
1

R2

=
2

Rt

− ρgz

σ
.

We now normalize all lengths by the tip radius of curvature Rt or Rb and identify
non-dimensional quantities with a star. In the cylindrical coordinates of figure 2(b) at
each point (r∗, z∗) along the drop surface, we therefore have:

κ∗ +
sin(φ)

r∗ = 2 + βz∗

where 1/κ∗ is the radius of curvature at point (r∗, z∗) along the free surface, calculated
in the z∗-direction and φ is the slope of the free surface, as shown in figure 2(b).
β = −ρgR2

t /σ is the Bond number. The sign of β changes between a pendent and a
sessile drop.

These equations are now expressed in terms of arclength s along the free surface.
The unknowns thus become z∗(s), r∗(s) and φ(s), as κ∗ = dφ/ds. The resulting set of
three equations:

dr∗

ds
= cosφ,

dz∗

ds
= sinφ,

dφ

ds
= 2 + βz∗ − sinφ

r∗ , (3.2)

are solved numerically, by a shooting method, based on guessing values for Rt and
minimizing the least-squares difference between the calculated drop shape and the
initial static drop shape obtained from the experimental image.

Figure 3(a) shows typical static drop shapes, compared to the inscribed circular
shapes using the radii of curvatures at the contact point. Figure 3(b) shows the range
of drop sizes tested herein. For the largest drop radii shown, we could only look
at the very first contact as the liquid masses were not formed into drops, just two
concave surfaces protruding slightly out of the nozzles. Boundary effects are in this
case bound to be severe.

3.2. Dynamic model of the coalescence speed

Surface tension drives the motion and either inertia or viscous forces resist. The
problem has no external velocity scale, as it starts from rest. Dimensional analysis
supplies two such velocity scales, i.e. a capillary velocity, by balancing the capillary
force with inertia

vσ =

√
σ

ρRd

(3.3)

and the viscous velocity, by balancing viscous forces and surface tension, i.e. by setting
the capillary number Ca =µU/σ = 1, where µ is the dynamic viscosity, which gives

vµ =
σ

µ
. (3.4)

We can form two separate Reynolds numbers based on these velocities,

Reσ =

√
ρRdσ

µ
(3.5)

using the capillary velocity and

Rev =
ρRdσ

µ2
(3.6)
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Figure 3. (a) Static drop shapes compared to spherical drops. Broken lines are circles of the
same radii as the radii of curvature at the contact point, Rt =1.53 and Rb = 2.05 mm. The
symbols show the measured shapes of the drops and the solid lines the static equilibrium
shapes calculated by solving the differential equations. (b) Typical static drop shapes used
herein, showing the range of drop sizes. The thick vertical line segments indicate the nozzle
locations for the largest radii of curvature used herein. The axis units are in mm.

based on the viscous velocity scale above. The latter is simply the square of the first
one. For the water drops, Rev takes values in the range 0.35 × 105 to 1.0 × 105. For
the most viscous glycerin/water solution used herein, this value becomes as small as
4 × 10−1.

Herein, we use a model to predict the outwards motion of the radius of the contact
region R, for low-viscosity liquids. It is based on balancing the capillary driving-
pressure and the dynamic pressure of the fluid, ρu2. Here, the driving pressure is
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approximated as

σ

(
1

δ
− 1

R

)
,

where we have included both of the principal radii of curvature to get the ‘total’
capillary pressure. For this geometry, the two curvatures are of opposite sign, pulling
the surface in opposite directions. Keep in mind that the capillary pressure in the
liquid at the edge of the coalescence region is negative.

This gives us a model for the local outwards velocity of the neck region

dR

dt
= C

√
σ

ρ

(
1

δ
− 1

R

)
, (3.7)

where δ is the vertical spacing of the two drop surfaces, as a function of R. This
spacing is obtained using the actual static shapes of the drops (see figure 3), following
the calculations in § 3.1. C is a proportionality constant to be determined from the
data. Using δ instead of δ/2 in comparison with 1/R is justified by the bulb which
develops at the end of the advancing interface. When integrating (3.7), we use the
observed initial radius of contact for the initial conditions R(t =0). We will consider
this inviscid model to be successful if C is a universal constant, independent of drop
size and the value of the surface tension.

Similar ideas were put forth by Oguz & Prosperetti (1989) and by Eggers et al.
(1999), as is clear from their derivation preceeding equation (5.1) reproduced in
our discussion section. Essentially, the same model has successfully described the
contraction of a thin disk of air caught under an impacting drop by Thoroddsen
et al. (2003).

Here, we have assumed that gravity need only be included as far as it deforms the
static drop shapes, but does not play a significant role in the coalescence dynamics.
This becomes clear by considering the free-fall of a drop from rest. In the 2 ms
duration of the coalescence of water drops, this drop would fall

h = 1
2
gt2 = 20 µm,

while the neck region grows to about 100 times that distance.

3.3. Model in the viscous-dominated regime

On purely dimensional grounds, the balance between surface tension and viscosity
would predict a constant coalescence velocity as in equation (3.4). However, the
asymptotic viscous theory of Eggers et al. (1999) has shown that the normalized neck
radius r∗

m =R/Rd grows as

r∗
m(t∗) ≈ − 1

π
t∗ ln(t∗),

where the dimensionless time t∗ is measured in units of µRd/σ and lengths are
normalized by the drop radius Rd . Therefore, the velocity is made dimensionless by
σ/µ. In real units, this equation states

R(t)

Rd

≈ − 1

π

σ t

µRd

ln

(
σ t

µRd

)
, (3.8)

showing that the actual radius of the drop Rd affects the speed through a logarithmic
dependence. In the above paper, the validity of this asymptotic theory is suggested
for r∗

m < 0.03 and Re < 1. In our experiments these conditions are never satisfied, as
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0 100 200 400 800 1800 µs

Figure 4. The surface shapes for coalescing water drops, Rb =1.15 and Rt = 1.08 mm. Using
needles with D =1.78mm and H/D = 1.8. Sequence taken with frame rate of 50 kHz. The
scale bar is 1mm long.

0 100 200 400

Figure 5. Close-up images of drop shapes during coalescence. From a different sequence to
that in figure 4, taken at 200 kHz. Rb = 1.36 and Rt = 1.04mm, using needles with D = 1.78 mm.
The times are in µs and the scale bar is 1mm long.

the initial R is about 60 µm which gives r∗
m∼ 0.03. Beyond this region of validity, the

formula quickly diverges, only reaching a maximum neck radius of r∗
m = 1/(πe) � 0.12.

Regarding the Reynolds number criterion, Eggers et al. (1999) point out that their
viscous theory will always be valid, irrespective of the liquid viscosity, provided one
goes to small enough diameters of the contact region. However, they also point
out that for water drops, this viscous-dominated regime ends when the radius of
the contact is about 10 nm, i.e. when the Reynolds number exceeds unity. The first
contact observed herein for water drops is about 5000 times larger than this upper
limit, thereby bypassing entirely the viscous-dominated regime, for water. For the
most viscous glycerin/water mixtures this Re criteria is satisfied during the initial
contact, as will be discussed in a later section.

4. Results
4.1. Coalescence of water drops

Figure 4 shows typical surface shapes during the coalescence of two water drops.
Figure 5 shows a close-up of the phenomenon. The higher frame rate, used for the
close-up images, requires larger gain for the sensing elements, making the images
slightly grainy.

Image analysis on a sequence of individual video frames allows us to track the
outwards motion of the neck region connecting the two drops. The time counter is,
in what follows, set to zero at the last frame before first motion is observed. Figures 6
and 7 show this outwards motion and compare it to the model presented in the
previous section.

The coefficient C is found from the best fit to the data by integrating relation
(3.7), starting from the observed initial radius of the contact. Figure 6 shows excellent
agreement with the model up to a radius of 70% of the average drop tip radii
Rave =(Rt +Rb)/2. We only use Rave when the two radii are similar in size. For widely
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Figure 6. Coalescence speed, for the drop in figure 4. The solid curve
shows the model fit with C = 0.84.
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Figure 7. Early stage of coalescence, for two realizations (�, +) one of which is shown in
figure 5. The other has drops with Rb = 1.38 and Rt =1.03mm. Radius in µm vs. time in µs.
First motion is observed about 20 µs after the electrical contact trigger. The solid line is the
predicted motion using equation (3.7) with C = 0.80. Ultra-high-speed camera frame rate was
200 kHz.

different radii or coalescence with a flat surface this definition is not appropriate. In
figure 7, for very early times, the curve showing the predicted values is indistinguishable
from the data, hiding behind the symbols.

Dozens of realizations were performed using different sets of needles to change the
drop diameters. It became clear that, for a given needle size, the vertical spacing H of
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Figure 8. The best-fit coefficient C in (3.7) vs. the separation distance of the two needles.
The needle diameters were both D =2.95 mm.

the two needles influences the value of the ‘constant’ C. By systematically varying this
distance H , we constructed figure 8, which shows up to a 25% reduction in the value
of C for very closely spaced needles, i.e. small value of H/D. The pinned boundaries
of the drops clearly slow down the coalescence motions, when the boundaries are
close to the neck region. By continuity, liquid has to move from the drops to fill in the
growth of the neck region. This movement of drop liquid deforms the original drop
surface. When the free surface is pinned close to the neck the original drop surface
has to deform more to provide this liquid. Less surface energy is therefore released,
slowing down the outwards motion of the neck.

Large values of H/D will model the coalescence of free drops better. However, for
large values of H , the drops become more deformed by gravity and the tip radii of
curvature differ more. The bottom drop has a tendency to ‘fall’ off the needle and
eventually the top drop will also pinch off. These practical considerations limit how
large H can be set. It is, however, possible that even larger values of H/D could
increase C somewhat, but we could not test this. This effect of small H/D might
influence some of the results of Wu et al. (2004).

Figure 9 shows that the value of C is independent of the size of the drops, keeping in
mind the corrections for needle spacing which are applied for the largest and smallest
drops (figure 12). These drops require close spacing of the needles as explained above.
The constant value of C demonstrates the validity of the model in (3.7).

The maximum outwards velocity occurs immediately following the first contact.
From figure 7, we can estimate the initial velocity as ur = 2.9 m s−1. For comparison,
the very thin air disks caught under an impacting water drop (Thoroddsen et al.
2003) were observed to start contracting at speeds of the order of 10 m s−1. Initial
neck velocity of 3.6 m s−1 was measured by Stover et al. (1997) for the coalescence of
two bubbles of 375 µm in diameter.

4.2. Initial contact

Figure 10 shows the earliest coalescence observed using the largest magnifications.
Using a magnification of about 10, we can obtain an estimate of the initial diameter
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Figure 9. The best-fit coefficient C in (3.7) vs. the average radius of curvature of the drops.
The first and last data points (�) are corrected for the separation distance of the two needles
(�), according to the broken line in figure 8.
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Figure 10. Earliest coalescence shapes for water drops. The scale bar is 500 µm long.

of the contact region. From this video sequence, we obtain 128 µm in diameter. For
off-axis contact, this region can be even smaller. The diameter of the initial contact
observed by Menchaca-Rocha et al. (2001) between mercury drops is 400 µm.

This finite size of the initial contact also destroys any geometric self-similarity at
the earliest times, so cherished by theoreticians. In the presence of air, the size of the
initial region is bound to depend on the growth-rate of the drops before contact, or
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0 400 800 1800

Figure 11. Evolution of the drop shapes during coalescence, from the same sequence as in
figure 4. The three panels on the right show the absolute value of the intensity difference
between the original image and the image of the evolved shape at the times indicated. The
times are in µs and the scale bar is 1mm long.

0 100 200 400

Figure 12. Evolution of the drop shapes during coalescence of the smallest drops tested,
Rb = 0.573 and Rt = 0.597mm. The value of C is here only 0.72, consistent with boundary
effects due to the small value of H/D = 1.2. The times are in µs and the scale bar is 1mm
long.

in other words their speed of approach. The air being push out of the gap between
the drops will introduce a pressure gradient, which will deform the contact region,
making the drops flatter. This may lead to an outer contact along a ring, as discussed
in § 5.3.

Figure 11 shows the relative changes in the surface shapes, by subtracting the
original image. The difference panels show the absolute value of the pixel intensities.
It is clear from these images that the deformation of the free surface is fairly local,
with the original drop shapes unchanged far from the neck region. However, a small-
amplitude capillary wave propagates along the drop surfaces. This wave has travelled
about 90◦ from the contact point, after only 800 µs from first contact. As most of the
free-surface deformation occurs close to the neck region, this allows us to measure
directly from the video frames, how the total surface area reduces in time.

4.3. Coalescence of alcohol drops

A limited number of experiments were conducted using alcohol drops to reduce the
surface tension. To enable the triggering, we used a mixture of 98% alcohol and 2%
DI water. The capillary length for alcohol is 1.9 mm, which is significantly smaller
than that for water, which is 2.8 mm. The drops are therefore more deformed by
gravity. The results show an identical time-curve to those for water, as shown in
figure 13. The best-fit coefficients are also very similar.

From the results for water and alcohol drops we conclude that the constant in
relation (3.7) takes the value C = 0.80 ± 0.05.
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Figure 13. Coalescence motions for 98% alcohol drops (σ = 0.027, ρ = 794 kgm−3), using
needles with D = 2.95mm, giving drops of Rt = 1.28, Rb =1.68mm. Included is the best
curve-fit with C = 0.84.
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Figure 14. Coalescence of water drops of widely different radii. The needle diameters are
Dt = 1.09 and Db = 8 mm, giving Rt = 0.72, Rb = 6.6 mm. The scale bar is 1 mm long.

4.4. Coalescence of drops having widely different radii

Some experiments were performed using differently sized needles, i.e. with a top
metallic needle of 1.09 mm while the bottom nozzle was a plastic gate-valve 8 mm
in diameter, as shown in figure 14. This was compared with data using two needles
of diameter 2.95 mm, which were taken in the same set of measurements. Figure 15
demonstrates that the best fit coefficient C has very similar values irrespective of the
difference between the top and bottom radii of curvature. The values are slightly lower
than 0.8, but no attempt was made to correct for any H/D effects here. This shows
that vertical spacing of the liquid surfaces δ is the primary parameter of importance
in the dynamics. The drop radii do, of course, determine the physical size of this
spacing, but have been absorbed into δ.

This invariance to the difference in top and bottom drop radii is discussed in § 5.5,
with respect to the well-known generation of a vortex ring when a drop coalesces
with a flat liquid surface.

4.5. Effects of increasing liquid viscosity

Experiments were conducted with glycerin/water mixtures to investigate the slow-
down of the coalescence due to viscous forces. Figures 16 shows the drop shapes
during coalescence for the most viscous liquid used. The most striking difference in
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Figure 15. Coefficient C vs. the ratio of the drop sizes.
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Figure 16. Coalescence shapes for the most viscous drops (96% glycerin, µ= 0.493 Ns m−2,
σ = 0.065, ρ = 1250 kgm−3), using needles with D = 2.95mm, giving Rt = 1.42, Rb = 1.55 mm.
The bottom row shows differences in the drop shapes between the static image and the
corresponding shapes at the times indicated. Times are in µs and the scale bar is 1mm long.

shape between the high- and low-viscosity liquids is the sharpness of the neck region,
as can be expected from examining the two-dimensional shapes presented by Hopper
(1992) for the viscous case and by Keller & Miksis (1983) for the inviscid case. This
change in neck curvature will be quantified below. The bottom panels in figure 16
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Figure 17. Coalescence for different concentrations of glycerin/water mixtures. (a) Low
concentrations of glycerin. �, 25% glycerin (σ = 0.070Nm−1, ρ = 1062 kgm−3, µ= 2.2 ×
10−3 Ns m−2), Rt = 1.50, Rb =1.54 mm. The best-fit coefficient C = 0.75. �, 50% glycerin
(σ =0.068N m−1, ρ =1130 kgm−3, µ= 7.2 × 10−3 Ns m−2), Rt = 1.43, Rb = 1.62mm. The best-
fit coefficient C = 0.64. (b) High concentrations of glycerin. �, 75% glycerin (σ = 0.066N m−1,
ρ = 1188 kgm−3, µ= 43 × 10−3 Ns m−2), Rt = 1.36, Rb = 1.77 mm. The best-fit coefficient
C =0.52. �, 90% glycerin (σ = 0.065N m−1, ρ =1225 kgm−3, µ= 0.220 Ns m−2), Rt = 1.47,
Rb = 1.53 mm. The best-fit coefficient C = 0.28. +, 96% glycerin (σ = 0.065N m−1, ρ =
1250 kgm−3, µ= 0.493Ns m−2), Rt = 1.42, Rb =1.55 mm. The best-fit coefficient C = 0.16. The
radial coordinates are normalized by the average radii of curvature. The needle diameters were
both D = 2.95 mm.

show the intensity differences from the original shapes. The deformation of the drop
is more gradual and does not show capillary waves.

Figure 17 shows the effect of increasing the viscosity on the coalescence speed of
the drops. Figure 17(a) shows the speed for the weaker concentrations of glycerin
used, i.e. 25% and 50%. Viscosity has already started to slow down the coalescence
for 50% glycerin. The coefficient C has reduced by about 15% while the shape of
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Figure 18. The best-fit coefficient C in (3.7) vs. drop Rev = ρRaveσ/µ2. The broken line is the
low viscosity value C = 0.80 determined using water drops.

the curve is not affected. Further increase in viscosity not only slows the coalescence
further, but changes qualitatively the shape of the curve, as shown in figure 17(b). The
values of C for these higher viscosities show a clear trend, but are quite subjective,
depending on where along the curve we choose to match the line with the data.
Figure 18 shows the reduction in C with increasing viscosity, i.e. with reduction in
the Reynolds number.

For the largest viscosity (figure 16), the free surface far away from the neck is
significantly disturbed early on. The image differences show movement at the outer
edge of the image, at about 4000 µs after first contact. We can therefore only measure
reliably the release of surface area up to that point in time, as our images are zoomed
in on the neck region.

Figure 19 shows that, for the largest viscosity, the speed is approximately constant
during the first 2500 µs. The linear fit to this region shows a outwards velocity of
ur =0.16 m s−1. Note that some of the realizations show a slightly lower initial velocity
before this linear region. This may be due to the finite initial contact radius. The
Reynolds number based on the instantaneous neck-radius r , as in Eggers et al. (1999)

Rev∗ =
ρrσ

µ2
, (4.1)

is here at first contact ∼ 0.02 and grows to Rev∗ � 0.12 where the data start to deviate
from this linear region, corresponding to R � 0.22Rave.

If we assume that the capillary viscous balance governs the motions in this region, we
would expect a velocity of approximately ur � σ/µ = 0.13 m s−1 which is surprisingly
close to the observed value. The formula (3.8) taken from Eggers et al. (1999)
predicts a radial velocity of ur � −σ [1 + ln(σ t/µR)]/(πµ), which in contrast with
the measurements, is monotonically decreasing with radius and time. For the fluid
properties in figure 19, the equation predicts ur = 0.115 m s−1 at R/Rave = 0.03 and
reduces to ur = 0.07 m s−1 at R/Rave = 0.06. The latter radius is outside the intended
region of applicability of this theory, but the former velocity is of the same order of
magnitude as the measurements.
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Figure 19. Coalescence speed for 96% glycerin/water drops (σ =0.065Nm−1, ρ =
1250 kgm−3, µ= 0.493Ns m−2). Using needles with D = 2.95mm, giving Rt = 1.45, Rb =
1.88mm. The line shows a velocity of 0.16 m s−1.
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(a) (b)

Figure 20. Neck shapes for different viscosities. The neck diameters are 560 µm. The viscosity
increases from the bottom image up and has values of (1.00, 2.17, 7.15, 42.6, 220 and 493)
× 10−3 Ns m−2, respectively.

4.6. Neck curvature vs. viscosity

Figure 20(a) shows close-up images of the shape changes in the neck region when
viscosity is increased. Here, we have chosen to fix the neck diameter for all the cases.
The video frames allow us to estimate the vertical curvature in the neck region.
We have done this by fitting inscribed circles to the surface shape. This was done
interactively and therefore contains some subjectivity, such as to how many data
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Figure 21. The curvature of the free surface in the neck region. (a) Total curvature (equation
(4.2)) measured from figure 20, vs. liquid viscosity. The broken line has a slope of 1/3. (b) The
radius of the inscribed circle Rsp vs. the neck radius R, for pure water (�, �) and 96% glycerin
(�, ∗).

points are used to find the ‘best-fit’ circles. Figure 21 shows how the total curvature

κt =

(
1

Rsp

− 1

R

)
(4.2)

changes as a function of viscosity. Here, Rsp is the radius of the inscribed circles in
figure 20(b). This radius varies from 12.9 to 89 µm for the 6 different viscosities shown
in the figure, whereas the neck radius is fixed at R = 280 µm for all. The neck becomes
progressively sharper as the viscosity increases. With lower viscosity, a capillary wave
crest appears to precede the neck region, very similar to the results of Keller et al.
(2000). The broken line in figure 21(a) has a slope of 1/3 and is just intended to guide
the eye.
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Figure 21(b) shows the change in the radius of curvature Rsp during the coalescence,
as the neck radius R grows. Results are shown for the largest and smallest viscosities.
Rsp was again estimated by manually fitting inscribed circles to the images. This
could not be done accurately for the smallest values of R, owing to the limited
pixel resolution. The results show that the much sharper relative curvature for the
viscous dominated motions, persists during all of the coalescence. While for the inertia
dominated regime, the vertical curvature reduces rapidly during the coalescence, with
the total curvature even falling to zero, i.e. where the data points cross over the line
Rsp = R, with the surface tension now slowing the intertial motions. Keep in mind
that the inscribed circle tries to estimate the curvature only around the centreline,
where the curvature was even observed to change sign in Keller et al. (2003).

5. Discussion
In this section, we will expand on the description of the results and compare them

to previous studies.
The only previous measurements of the initial coalescence motions were accom-

plished by Menchaca-Rocha et al. (2001). Most of their measurements are focused
on times larger than 1 ms after first contact. However, a few of their measurements
were taken at 50 kHz starting at times as early as 10 µs after first electrical contact,
giving comparable temporal resolution to that obtained here. These remarkable
measurements were conducted with an 8-frame ‘analog camera’. As mentioned earlier,
their set-up is significantly different from ours. They used sessile mercury drops sitting
on a glass plate. In this way, they succeed in producing nearly identical drops free
of the differential distortions of our two drops, owing to their orientation w.r.t.
gravity. However, by using two sessile drops, one sacrifices axisymmetry about the
axis connecting the two drop centres, as gravity makes the vertical and horizontal
curvatures different. This becomes progressively more pronounced as the drops are
made larger. The curvature in the vertical plane is larger than that in the horizontal
plane, whereas the separation of the free surfaces δ changes more slowly in the
horizontal direction, therefore driving the overall coalescence motions. This difference
in the two principal radii of curvature also raises the possibility of shape oscillations
in the neck cross-sections. Despite the large surface tension of mercury, its very large
density makes mercury drops less spherical than water drops. The capillary length for
mercury is 1.9 mm compared to that for water which is 2.8 mm. Their configuration
is, on the other hand, free of the boundary effects due to the pinning at our needles.
For all these reasons, we do not expect perfect agreement with the present results, in
what follows.

Comparison with direct numerical simulations is difficult, as even the most
sophisticated numerical methods seem to have problems with the very earliest motions,
as is evident in the numerical section of Menchaca-Rocha et al. (2001).

Wu et al. (2004) also find poor comparison with the coalescence speed from the
inviscid results of Duchemin, Eggers & Josserand (2003). This can be expected,
as Duchemin et al. (2003) focus on the very early stage of the coalescence where
they find repeated reconnections and entrapment of toroidal ‘bubbles’ or ‘voids’. The
experiments appear to bypass this intial stage, owing to finite intial contact radius
caused by the lubrication pressure in the air.

5.1. Power-law scaling

Because of recent interest in self-similar universal solutions for free-surface flows
and their ‘singularities’, many studies have focused on the appearance of power-law
scaling for some physical quantities, e.g. Eggers (1997) and Zeff et al. (2000).
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Eggers et al. (1999) concentrate on viscous-dominated coalescence, but also include
a dimensional argument for the inviscid case, where they predict that the radial growth
of the neck has a power-law dependence on time. They assume that the interfacial
stress driving this motion is σRd/r2, where Rd and r are the drop radius and the neck
radius, respectively. This stress should be balanced by the dynamic pressure ρv2. By
setting v = dr/dt they obtain a differential equation for the radius, i.e.(

drm

dt

)2

∝ σRd

ρr2
m

⇒ drm

dt
∝

(
σRd

ρ

)1/2
1

rm

,

which has the solution

rm ∝
(

σRd

ρ

)1/4

t1/2. (5.1)

These authors expect this power law to be valid only for r 
 Rd . They use r/Rd < 0.03
as a rule of thumb in their viscous theory. Here we take the liberty of comparing our
data to their inviscid theory up to much larger radii. Duchemin et al. (2003) describe
in more detail the subtleties involved in the above balance.

Menchaca-Rocha et al. (2001) applied such a power-law scaling to their data, i.e.
r ∝ tα , obtaining values for α of 0.41 for large radii and 0.55 for the earliest times.
These values are in reasonable agreement with the above prediction of α = 0.5.

For completeness, we have also compared our results with these power laws. We
have chosen drops where H/D > 1.5 and the bottom radii Rt and Rb are similar.
Figure 22(a) shows the data compared to the predicted exponent of 1/2. The data
deviate clearly from this power law at the largest neck radii. This is not unexpected,
as the arguments underlying this prediction were only intended to apply for very
small R/Rave. This fall-off in α is very similar to that observed by Menchaca-Rocha
et al. (2001). The best-fit line, through the last 16 data points, in figure 22(a), i.e.
for the largest R/Rave values, gives a slope of 0.408, This is identical to the slope
mentioned above for sessile mercury drops. This may be surprising, considering the
widely different boundary conditions in the two studies.

Power laws require a known origin for the time, which is not easily observed from
the experiments. The data-points for the earliest times in figure 22(a), suffer large
uncertainties in the determination of to, owing to the relatively slow sample rate,
which was 50 kHz for this realization. Figure 22(b) shows a similar log–log plot for a
sequence sampled at 200 kHz, which identifies the origin of time with more certainty.
Here, the power law is also weaker than 0.5, with a best-fit slope of 0.46. Menchaca-
Rocha et al. (2001) report a steeper slope of 0.55 from their earliest data-points.
However, this value is highly dependent on the choice of origin for their time-axis.
This is demonstrated in figure 23, where we have looked at their data and shifted the
zero time by subtracting 25 and 50 µs. We have also left out the first data points from
the exponential fits. The figure shows that this shifting can produce slopes both larger
and smaller than 0.5. It is therefore quite critical to determine whether the electrical
contact and the fluid contact occur exactly simultaneously. This is a question which
we cannot answer with certainty, neither for their data nor for ours. However, the
strong dependence of the exponent on slight variations in to is clear.

The slight deviation of the observed slopes from 0.50 may be due to the finite
initial radius of the contact, i.e. because the drops do not meet at a point as the
theory presumes. In other words, the capillary pressure must initially accelerate more
liquid than if the contact were at a point and the neck motions were given a flying
start. The effects of a finite initial contact radius is aggravated by the observation
that the release of surface energy is fastest at first contact, as will be shown in the
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Figure 22. The coalescence motions on a log–log plot. (a) Data from figure 6. The line has a
slope of 0.50. Data taken using frame rate of 50 kHz. (b) The coalescence shown in figure 7
on a log–log plot. The bold line has a slope of 0.50, whereas the best-fit thin line has a slope
of 0.46.

following subsection. Experiments in a vacuum would be valuable to address this
issue, as the contact should occur closer to a point, resulting in much larger initial
outwards velocities and a larger range over which to test the power law. The reduced
angle of the contact might also lead to entrapment of bubble rings, as proposed by
Duchemin et al. (2003), Keller et al. (2003) and Oguz & Prosperetti (1989).

The effects of viscous forces on these power laws were investigated by looking at
the water/glycerin solutions. Figure 24 shows that none of the data show a clear
power-law scaling over the whole time-span, while there is a general trend with the
slopes increasing with larger viscosities. A constant velocity, as was observed in part
of figure 19, would give a slope of 1.
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Figure 23. The effect of shifting the origin of the time axis on the exponent in the power law.
�, the original data from Menchaca-Roca et al. (2001), with the best-fit exponential of 0.55.
+, data when the origin has been shifted by subtracting 25 µs. The best-fit exponential is now
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Figure 24. The effect of viscosity on the power-law scaling of the radial motions. From left
to right the (�, +, �, �, �, ×)-symbols correspond to viscosities of (1.00, 2.17, 7.15, 42.6, 220
and 493) × 10−3 Ns m−2 respectively. The solid line has a slope of 0.5 and the dashed line a
slope of 1.0.

The power-law dependence on the liquid properties is different in (5.1) from Eggers
et al. (1999) and, in the equation, we propose (3.7). Comparing data for different
liquids, such as alcohol, water and mercury, this dependence can be investigated.
Unfortunately, the range of liquid properties is not sufficiently large to distinguish
between the different models.
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5.2. Release of surface energy

The coalescence motions are driven by the release of surface energy σ 	S. For the
idealized case of two spherical drops of radii R1 and R2 which coalesce to form a new
drop R3, volume conservation dictates that

R3 =
(
R3

1 + R3
2

)1/3
,

with the corresponding reduction in surface area S

	S = S3 − (S1 + S2) = 4π
[(

R3
1 + R3

2

)2/3 −
(
R2

1 + R2
2

)]
.

If R1 =R2, the fraction of surface energy released becomes

−	S

S1 + S2

= 1 − 2−1/3 = 0.206, (5.2)

which shows that rather a small fraction of the initial surface energy is released
during the coalescence. For reference, consider two water drops with R1 = R2 = 1mm.
If all of the released energy were converted, without losses, into translational kinetic
energy of the combined drop, its velocity would become 0.3 m s−1. This shows clearly
that only a small fraction of the drop liquid participates in the rapid coalescence
motions, which are as much as 10 times faster (see figure 7), therefore giving some
fluid elements 100 times that average kinetic energy.

Our drops are pinned at the needles and therefore have less free-surface energy to
release. However, for large separation of the needles, this will not affect the initial
motions, which are concentrated in the neck region.

The area of the free surface was integrated from the video images, using the
axisymmetry. Image processing using edge-detection identified the pixels on the drop
edges, as shown in figure 25(a). Polynomial fits to the ‘jagged’ pixel data were used
to calculate the area. This had to be done in segments, owing to the sharp curvature
in the neck region.

Figure 25(b) shows the release of surface energy during both the coalescence of
water drops and of 96% glycerin drops. The areas have been normalized by the
area of spheres having the radii of the tip radii of curvatures of the static drops, i.e.
So = 4π(R2

t + R2
b). The coalescence for the two different viscosities show significant

qualitative differences in the energy release. The inviscid case shows maximum rate
of release at first contact, with a monotonically decreasing rate, whereas the viscous
case shows a constant rate of decrease in surface area from 0.5 to 3 ms after first
contact, with the short initial period of slower release of energy. This is consistent
with the slightly lower initial velocities which are observed for some of the most
viscous realizations, see figure 19.

5.3. The radius of initial contact

The original neck sizes observed herein are about 120 µm in diameter. Assuming
the contact is along a ring, this should trap an air-disk of approximately 100 µm in
diameter. For drops of 0.8 mm in radius, this represents only 0.4% of their original
area and is therefore rather insignificant in the overall dynamics, even though this
represents 2% of the total released area in (5.2). However, this energy is released
very quickly and the very first motions might be affected by the contraction of this
air-disk into one or two bubbles at the centreline, see Thoroddsen et al. (2003) and
photographs by Peck & Sigurdson (1994). The contraction of this air-disk will induce
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Figure 25. (a) Coalescence shapes for 96% glycerin, µ= 0.493Ns m−2. The surface profiles
are separated by 500 µs, starting from first contact. The broken line marks the drop centrelines.
The axes are in units of mm. (b) The release of surface area during drop coalescence. The
areas have been normalized as explained in the text. �, large viscosity, 96 % glycerin; �, water.

velocities in the opposite direction to the overall outwards motions driven by the outer
edge. This may therefore slow down the motion during the first few micro-seconds
after first contact. If the thickness of the entrapped air sheet were known, this effect
could be estimated, but the present optical set-up is not up to this task. Without
measuring precisely the approach velocity of the drops, we can neither calculate this
thickness, nor find the force pushing the two drops together. We can however, find a
rough estimate of the dimple radius b over which the drops are deformed, by taking
the balance between the surface tension and the weight pushing the surfaces together,
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see Rother et al. (1997). This suggests π b2σ/Rd � 	ρgR3
d , which gives us

b �
√

	ρ g/(πσ ) R2
d . (5.3)

Rother et al. (1997) represent Rd by the reduced radius R1 R2/(R1 + R2) which
gives the normalized radius of the disk as r/b � 1. For our typical water drops
of Rt = Rb =1 mm, the reduced radius becomes Rd = 0.5 mm and this equation
gives b =50 µm, consistent with the smallest initial contact radii, observed in the
experiments, of about 60 µm. This close agreement is probably coincidental, but
indicates that the observed initial radius represents a physically reasonable value.

The electrical trigger might also affect the size of the initial contact, by electrostatic
forces which might pull the two surfaces together. As discussed earlier, the trigger
circuit was designed to minimize the electrical current following the contact, so that
even if electric forces affect the size of the initial contact, we do not expect them to
influence the subsequent dynamics of the coalescence. Triggering based on a different
principle, possibly using the blockage of a laser beam by the advancing contact,
would eliminate such electrical effects.

We can also consider the possibility that the contact might occur at a point and the
initial motions might not be observed owing to slight misalignments of the optical
axis from the horizontal. Point contact might be promoted by the static charge due to
the trigger, counteracting the formation of a dimple by the lubrication pressure. This
is consistent with the data in figure 7, where we can extrapolate the solid curve down
to zero radius and find that it intersects the time axis approximately at the time of the
electrical trigger, i.e. 20 µs before the first observed motion. The fact we do not notice
a bubble inside the contact region, is also consistent with a point contact. However,
the entrapped bubble would probably be quite small and could be hidden by light
refraction from the highly curved free surface. We should mention that shifting the
time-axis in figure 22(b) destroys the power law, making the data points for the first
100 µs lie close to a slope of 0.63, see the discussion on figure 23. We conclude that
the two scenarios, of the contact at a point and along a ring, seem compatible with
the data, and measurements using different optical set-ups are required to determine
conclusively which occurs.

5.4. Intermediate viscosities

The theories mentioned above deal either with the inviscid or the viscous-dominated
regimes. A theory of coalescence at intermediate Reynolds numbers is not available
for comparison. We have, however, noticed by trial and error, that the data in
figure 17(b) fall close to the same curve if we divide the time-axis by

√
µ, as is shown

in figure 26. We have, however, no theory which explains this curiosity and one should
keep in mind that the range of viscosities is rather limited in this case.

5.5. Free-surface vorticity

It is well known that a drop coalescing with a flat liquid surface, or impacting onto
it at low velocity, will produce a robust vortex ring which travels into the bottom
layer, see e.g. Rogers (1858), Thomson & Newall (1885), Dooley et al. (1997) and
the vorticity evolution studied by Peck & Sigurdson (1994). The vorticity in the
ring is produced by the flow along a curved free surface, which produces vorticity
at the free surface (Cresswell & Morton 1995). Heuristically, this occurs because
irrotationality and the shear-free boundary conditions cannot both be satisfied at the
curved surface and to avoid infinite accelerations irrotationality must be relaxed. This
vorticity diffuses into a thin layer which may separate from the free surface, thus
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Figure 26. The data from figure 17(b), using the same symbols, where the time-axis has been
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Figure 27. Coalescence of a dyed water drop with a flat liquid pool, which generates a vortex
ring. The liquid is water and the nozzle opening is about 5mm in diameter. The ring expands
in the last panel, as it encounters the bottom of the tank.

entering the bulk liquid, see figure 27 as an example. This mechanism is absent in all
of the inviscid theories describing coalescence, as they assume potential flow.

The symmetry of coalescing drops suggests the formation of two opposite sign
vorticity layers, which might separate from the two sharp corners (figure 20) which
form during the low-viscosity coalescence. If these vortex sheets separate, they would
most probably produce an unstable configuration of two parallel vortex sheets of
opposite sign, which could annihilate or wrap around one another.

Separation of the vorticity seems most likely if one drop is much larger than the
other, as the internal pressure is then higher in the smaller drop, which promotes
mean flow along the free surface, from the smaller to the larger drop. Photographs of
this phenomena are shown in the above-cited papers and in Anilkumar, Lee & Wang
(1991). The present experiments were not set up to identify such rings. However, were
a vortex ring produced, one should expect the outwards motion of the neck region to
slow down. Principally, because the energy released from the free surface would have
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to go into the kinetic energy of the vortex ring in addition to increasing the added
mass of the outward coalescence motion, e.g. discussion in Rein (2002). Our results,
shown in figure 15, however, do not show any significant reduction in the value of
C as the two tip radii of curvature become widely different, thus approaching the
drop/pool configuration. For the largest difference in the two drop radii, the value
of C reduces only by about 6%. This may suggest that vorticity layers are indeed
formed even for the coalescence of equal sized drops, thus always absorbing some
of the released surface energy. However, these vorticity layers may not separate from
the free surface, or most probably not roll up to form coherent rings.

5.6. Spherical drops

For two perfectly spherical drops, we can predict analytically the speed of the outwards
motion of the neck region based on (3.7). Here we know the form of δ(R) in the
equation. Denoting the distance from the middle plane to the drop surfaces by δ1 and
δ2, we obtain

δ(R) = δ1 + δ2 = Rt + Rb −
√

R2
t − R2 −

√
R2

b − R2.

Without loss of generality we set Rt = 1 and Rb = η Rt , i.e. we measure R in units of
Rt , which gives

δ

Rt

= δ∗(R) = 1 + η −
√

1 − R2 −
√

η2 − R2,

which can be substituted into (3.7) and solved numerically.
For drops of identical radius η = 1 we obtain

v(R) =
dR

dt
= C

√
σ

2ρ

(
1

1 −
√

1 − R2
− 2

R

)1/2

, (5.4)

which can be solved numerically for the appropriate initial conditions.
For tip radii of curvature smaller than the capillary length Rave < a, the deformations

of the drop shapes are small and the tip radii can be estimated by the overall radii of
the drops, e.g. by half the horizontal width. The predicted motions from using (3.7)
and (5.4) should then be the same.

6. Conclusions
We have measured the early surface motions during the coalescence of a pendent

and a sessile drop. A dimensional model based on the vertical separation distance
between the liquid surfaces has successfully described these motions up to R/Rd � 0.7.
This model, in (3.7), contains one empirical constant which takes a value of
C = 0.80 ± 0.05. This value of the non-dimensional coefficient C is similar to the
value obtained by Thoroddsen et al. (2003) for the contraction of a thin disk of air
caught under an impacting water drop. That study found a value of C =0.94. The
model used therein differs slightly from the present one, in that it only included one
of the principal radii of curvature. Including the other radius of curvature, which
has the same sign for an air disk, would lower the value of C to approximately 0.90
making its value even closer for the two configurations.

The coalescence motions were compared to power-law scalings. Reasonable
agreement was found with the R ∝ t0.5 predictions of Eggers et al. (1999), for the
early coalescence when R/Rave < 0.35. In this region, we find a power coefficient of
0.46. This lower value of the coefficient might be caused by the finite initial contact
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radius. For larger radii, the power-law slope becomes 0.41, significantly lower than
the prediction, but in good agreement with earlier measurements of Menchaca-Rocha
et al. (2001) for two sessile mercury drops.

The coalescence motions start at 20–50 µs after onset of electrical contact. We
speculate that this hesitation may be caused partly by the entrapment of a minute
disk of air at the centre of the contact. The contraction of this disk into a bubble
will resist the outwards motion for the first few micro-seconds. The exact duration
of this effect would depend on the initial thickness of this air disk, which could not
be measured in our set-up. We also discuss other possible effects during the initial
contact.

Experiments with drops of higher viscosity, by using glycerin/water mixtures, show
a decrease in coalescence speed for Rev = ρRaveσ/µ2 < 5000. This suggests that for
water drops, the viscous forces only begin to affect the coalescence if their radii are
smaller than 70 µm. This predicts capillary–inertial motions at scales of relevance to
typical dimensions of MEMS devices, e.g. Velev, Prevo & Bhatt (2003). This drop size
is consistent with the smallest droplets observed by Thoroddsen & Takehara (2000)
in the capillary–inertial coalescence cascade, where a 180 µm drop has been observed
to eject at high speed a 90 µm diameter satellite droplet. At Re ∼ 50 the value of C

has reduced by half, which corresponds to a water drop of only 2 µm in diameter.
As the viscosity is increased, the curvature in the neck region also becomes sharper

and the shape changes qualitatively. This is quantified and is found to be consistent
with earlier theoretical studies.
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Thomas Cubaud.
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